
Outhai SAIOUDOM, Lao IT Dev Co.,Ltd, H.O.D Media, CQ Co.,Ltd
 @Os555

Secure Coding
ການຂຽນ Code ໃຫ້ປອດໄພ

Name: Outhai SAIOUDOM

Nick: Os, (LoungOS)
Codename: Os555
Skills: Linux, CyberSec, NooB Cryptocurrency Trader
Position: Co-Founder / C.T.O - LaoITDev Co., Ltd.

Os555 ລຸງໂອ້ດ Os555

~# whoami

3

Secure Coding
ການຂຽນ Code ໃຫ້ປອດໄພ

ໃນໂລກນີ້ຈະມີຄົນຢູ່ 2 ປະເພດຄື:

1. ຄົນທີ່ຖືກແຮັກ

2.ຄົນທີ່ຖືກແຮັກແຕ່ຍັງບໍ່ຮູ້ໂຕວ່າຖືກແຮັກ

This is a title and body slide

Location

https://www.bangkokpost.com/thailand/general/1446182/data-of-truemove-h-users-leaked-online

https://www.bitdefender.co.th/post/3bb-10-000

Case Study #1 Facebook Token

https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html?fbclid=IwAR0kyQE67RF2g5YyGQ_12fnaSI5tBOv0Owt4ur73myRDe_zNysJeQhGY0WQ

First: View As is a privacy feature that lets people see what their own
profile looks like to someone else. View As should be a view-only
interface. However, for one type of composer (the box that lets you post
content to Facebook) — specifically the version that enables people to
wish their friends happy birthday — View As incorrectly provided the
opportunity to post a video.

Second: A new version of our video uploader (the interface that would be
presented as a result of the first bug), introduced in July 2017, incorrectly
generated an access token that had the permissions of the Facebook
mobile app.

Third: When the video uploader appeared as part of View As, it
generated the access token not for you as the viewer, but for the user
that you were looking up.

It was the combination of these three bugs that became a vulnerability:
when using the View As feature to view your profile as a friend, the code
did not remove the composer that lets people wish you happy birthday;
the video uploader would generate an access token when it shouldn’t
have; and when the access token was generated, it was not for you but
the person being looked up. That access token was then available in the
HTML of the page, which the attackers were able to extract and exploit to
log in as another user.

https://newsroom.fb.com/news/2018/09/security-upd
ate/

https://www.owasp.org

OWASP Web Top 10 Application Security Risks - 2017

A1: Injection
A2: Broken Authentication
and Session Management

A3: Sensitive Data Exposure
A4: XML External Entities

(XXE)

A5: Broken Access Control
A6: Security

Misconfiguration
A7: Cross-Site Scripting

(XSS)
A8: Insecure Deserialization

A9: Using Known Vulnerable
Components

A10: Insufficient Logging &
Monitoring

https://owasp.org/www-project-top-ten/2017/Application_Security_Risks.html

OWASP Web Top 10 Application Security Risks - 2017

OWASP Top 10 Application Security Risks - 2017

A1: Injection

Input Validation

❑ Overview

❑ SQL Injection

❑ Command Injection

❑ Directory Traversal

❑ Blacklist vs. Whitelist validation

❑ Client Side vs Server Side Validation

How Does Web / Mobile Application Work

Web Server

User

Client Side

Database Server

Server Side

Facebook.co
m

Web BrowserInternet

Request

Response

Input Validation

❑ Overview

❑ SQL Injection

❑ Command Injection

❑ Directory Traversal

❑ Blacklist vs. Whitelist validation

❑ Regular expressions(Regex)

❑ Client Side vs Server Side Validation

The core security problem is

“User can submit arbitrary input”

So….

Never Trust Client Input

What is an input?

SQL Injection Example

Failed Code #1

SQL Injection (Example)

$id = 1;
$query = ''SELECT first_name, last_name FROM users WHERE user_id = '1'; '';

SELECT first_name, last_name FROM users WHERE user_id = '1';

$id = 2;
$query = ''SELECT first_name, last_name FROM users WHERE user_id = '2'; '';

SELECT first_name, last_name FROM users WHERE user_id = '2';

$id = ' or '1'='1;
$query = "SELECT first_name, last_name FROM users WHERE user_id = '' or '1'='1'; '';

SELECT first_name, last_name FROM users WHERE user_id = '' or '1'='1';

SQL Injection (Example)

SELECT * FROM users WHERE username = admin and password = '' or '1'='1';

Secure Code

Prepared Statements in NodeJS

Input Validation

❑ Overview

❑ SQL Injection

❑ Command Injection

❑ Directory Traversal

❑ Blacklist vs. Whitelist validation

❑ Regular expressions(Regex)

❑ Client Side vs Server Side Validation

Failed Code #1

Command Injection

Failed Code #2

Failed Code #1

Failed Code #2

Should we implement input validation on

Client Side or Server Side?

Input Validation On Both Side

Web Server

Internet

Server side
❖ Server is trusted system

Client side
❖ Reduce bad requests
❖ Reduce server processing
❖ User friendly interface

Input Validation Check list
❑ Conduct all data validation on a trusted system (e.g., The server)

❑ Identify all data sources and classify them into trusted and untrusted. Validate all data from untrusted sources (e.g., Databases, file streams, etc.)

❑ There should be a centralized input validation routine for the application

❑ Specify proper character sets, such as UTF-8, for all sources of input

❑ Encode data to a common character set before validating (Canonicalize)

❑ All validation failures should result in input rejection

❑ Determine if the system supports UTF-8 extended character sets and if so, validate after UTF-8 decoding is completed

❑ Validate all client provided data before processing, including all parameters, URLs and HTTP header content (e.g. Cookie names and values). Be sure to include automated post
backs from JavaScript, Flash or other embedded code

❑ Verify that header values in both requests and responses contain only ASCII characters

❑ Validate data from redirects (An attacker may submit malicious content directly to the target of the redirect, thus circumventing application logic and any validation performed
before the redirect)

❑ Validate for expected data types

❑ Validate data range

❑ Validate data length

❑ Validate all input against a "white" list of allowed characters, whenever possible

❑ If any potentially hazardous characters must be allowed as input, be sure that you implement additional controls like output encoding, secure task specific APIs and accounting
for the utilization of that data throughout the application. Examples of common hazardous characters include: < > " ' % () & + \ \’ \”

❑ If your standard validation routine cannot address the following inputs, then they should be checked discretely

❑ Check for null bytes (%00)

❑ Check for new line characters (%0d, %0a, \r, \n)

❑ Check for “dot-dot-slash" (../ or ..\) path alterations characters. In cases where UTF-8 extended character set encoding is supported, address alternate representation
like: %c0%ae%c0%ae/

❑ (Utilize canonicalization to address double encoding or other forms of obfuscation attacks)

OWASP Top 10 Application Security Risks - 2017

A2: Broken Authentication and Session Management

Strong Login System

41

What is authentication

❑ Identification : who someone is (e.g. username, Smart Card, ID Card)

❑ Authentication : The process of proving an identity (e.g. password)

❑ Authorization : What are you allowed to do? (e.g. Read/Write access)

❑ Verification : Confirming the truth or accuracy of the details provided by user

Authentication and Password Management

Authentication is the first step in access control, and there are three common factors used for
authentication

something you know : Username & Password

something you have : Credit Card & ATM Card

something you are : Fingerprint & biometric method

http://www.pearsonitcertification.com/articles/article.aspx?p=1718488

Users enumeration (Failed)

No account found with that username.

The password you entered was not valid.

https://www.tutorialrepublic.com/php-tutorial/php-mysql-login-system
.php

Users enumeration (Secure)

Username or Password is invalid

Login Function Security

❑ When user login failed, do not tell user the failed reason. Response the same message.

❑ Lock user’s account when user login failed for many times

❑ Delay User login failed

Password Attack

• Do not allow user set easy password such as
• Well known
• Dictionary
• Simple string

Anti-Automation

• Check user agent such as
• hydra

Authentication & Password Management Check List

❑ Require authentication for all pages and resources, except those specifically intended to be public

❑ All authentication controls must be enforced on a trusted system (e.g., The server)

❑ Establish and utilize standard, tested, authentication services whenever possible

❑ Use a centralized implementation for all authentication controls, including libraries that call external authentication services

❑ Segregate authentication logic from the resource being requested and use redirection to and from the centralized authentication control

❑ All authentication controls should fail securely

❑ All administrative and account management functions must be at least as secure as the primary authentication mechanism

❑ If your application manages a credential store, it should ensure that only cryptographically strong one-way salted hashes of passwords are stored and that the table/file that stores
the passwords and keys is write-able only by the application. (Do not use the MD5 algorithm if it can be avoided)

❑ Password hashing must be implemented on a trusted system (e.g., The server).

❑ Validate the authentication data only on completion of all data input, especially for sequential authentication implementations

❑ Authentication failure responses should not indicate which part of the authentication data was incorrect. For example, instead of "Invalid username" or "Invalid password", just
use "Invalid username and/or password" for both. Error responses must be truly identical in both display and source code

❑ Utilize authentication for connections to external systems that involve sensitive information or functions

❑ Authentication credentials for accessing services external to the application should be encrypted and stored in a protected location on a trusted system (e.g., The server). The
source code is NOT a secure location

❑ Use only HTTP POST requests to transmit authentication credentials

❑ Only send non-temporary passwords over an encrypted connection or as encrypted data, such as in an encrypted email. Temporary passwords associated with email resets may
be an exception

❑ Enforce password complexity requirements established by policy or regulation. Authentication credentials should be sufficient to withstand attacks that are typical of the threats in
the deployed environment. (e.g., requiring the use of alphabetic as well as numeric and/or special characters)

Authentication & Password Management Check List
❑ Enforce password length requirements established by policy or regulation. Eight characters is commonly used, but 16 is better or consider the use of multi-word pass phrases

❑ Password entry should be obscured on the user's screen. (e.g., on web forms use the input type "password")

❑ Enforce account disabling after an established number of invalid login attempts (e.g., five attempts is common). The account must be disabled for a period of time sufficient to
discourage brute force guessing of credentials, but not so long as to allow for a denial-of-service attack to be performed

❑ Password reset and changing operations require the same level of controls as account creation and authentication.

❑ Password reset questions should support sufficiently random answers. (e.g., "favourite book" is a bad question because “The Bible” is a very common answer)

❑ If using email based resets, only send email to a pre-registered address with a temporary link/password

❑ Temporary passwords and links should have a short expiration time

❑ Enforce the changing of temporary passwords on the next use

❑ Notify users when a password reset occurs

❑ Prevent password re-use

❑ Passwords should be at least one day old before they can be changed, to prevent attacks on password re-use

❑ Enforce password changes based on requirements established in policy or regulation. Critical systems may require more frequent changes. The time between resets must be
administratively controlled

❑ Disable "remember me" functionality for password fields

❑ The last use (successful or unsuccessful) of a user account should be reported to the user at their next successful login

❑ Implement monitoring to identify attacks against multiple user accounts, utilizing the same password. This attack pattern is used to bypass standard lockouts, when user IDs can
be harvested or guessed

❑ Change all vendor-supplied default passwords and user IDs or disable the associated accounts

❑ Re-authenticate users prior to performing critical operations

❑ Use Multi-Factor Authentication for highly sensitive or high value transactional accounts

❑ If using third party code for authentication, inspect the code carefully to ensure it is not affected by any malicious code

OWASP Top 10 Application Security Risks - 2017

A3: Sensitive Data Exposure

52

What is Sensitive Data?

Information such as:
Bank account details
Credit card numbers
Passwords
Session tokens
Tax details
Company secrets
Healthcare information
Contact and demographic information
amongst others can be considered to be Sensitive Data.

Chart Data Source Info

OWASP Top 10 Application Security Risks - 2017

A4: XML External Entities (XXE)

54

A4: XML External Entities (XXE)

XML external entity injection (also known as XXE) is a web security vulnerability that allows an
attacker to interfere with an application's processing of XML data. It often allows an attacker to
view files on the application server filesystem, and to interact with any back-end or external
systems that the application itself can access.

Chart Data Source Info

OWASP Top 10 Application Security Risks - 2017

A5: Broken Access Control

56

A5: Broken Access Control
Access control enforces policy such that users cannot act outside of their intended permissions.
Failures typically lead to unauthorized information disclosure, modification or destruction of all
data, or performing a business function outside of the limits of the user. Common access control
vulnerabilities include:
* Bypassing access control checks by modifying the URL, internal application state, or the HTML
page, or simply using a custom API attack tool.
* Allowing the primary key to be changed to another’s users record, permitting viewing or editing
someone else’s account.
* Elevation of privilege. Acting as a user without being logged in, or acting as an admin when
logged in as a user.
* Metadata manipulation, such as replaying or tampering with a JSON Web Token (JWT) access
control token or a cookie or hidden field manipulated to elevate privileges, or abusing JWT
invalidation.
* CORS misconfiguration allows unauthorized API access.
* Force browsing to authenticated pages as an unauthenticated user or to privileged pages as a
standard user. Accessing API with missing access controls for POST, PUT and DELETE.

57

A5: Broken Access Control

Chart Data Source Info

OWASP Top 10 Application Security Risks - 2017

A6: Security Misconfiguration

59

A6: Security Misconfiguration

1. directory listing enable
2. update security patch out date
3. HttpOnly Cookie not implement
4. Error message
5. …….

Chart Data Source Info

OWASP Top 10 Application Security Risks - 2017

A7: Cross-Site Scripting (XSS)

61

Cross Site Scripting (Dom Based XSS)

Failed Code #1

Secure Code

Chart Data Source Info

OWASP Top 10 Application Security Risks - 2017

A8: Insecure Deserialization

66

A8: Insecure Deserialization

Exploitation of deserialization is somewhat
difficult, as off the shelf exploits rarely work
without changes or tweaks to the underlying
exploit code.

Chart Data Source Info

OWASP Top 10 Application Security Risks - 2017

A9: Using Known Vulnerable Components

69

A9: Using Known Vulnerable Components

While it is easy to find already-written exploits for
many known vulnerabilities, other vulnerabilities
require concentrated effort to develop a custom
exploit.

1. Update Library , framework version, runtime, software, OS.
2. Check CVE Update from (https://cve.mitre.org), NVD

(https://nvd.nist.gov/)
3. Using only well-know Library , Framework, Plugin
4. Update Library , Framework, Plugin to the latest version.

https://cve.mitre.org/
https://nvd.nist.gov/

Chart Data Source Info

OWASP Top 10 Application Security Risks - 2017

A10: Insufficient Logging & Monitoring

71

A10: Insufficient Logging & Monitoring

Exploitation of insufficient logging and monitoring is the bedrock
of nearly every major incident.

Attackers rely on the lack of monitoring and timely response to
achieve their goals without being detected.

https://www.digitalocean.com/community/tutorials/building-for-production-web-applications-centralized-logging

https://www.digitalocean.com/community/tutorials/building-for-production-web-applications-centralized-logging

Access Control Check List
❑ Use only trusted system objects, e.g. server side session objects, for making access authorization decisions

❑ Use a single site-wide component to check access authorization. This includes libraries that call external authorization services

❑ Access controls should fail securely

❑ Deny all access if the application cannot access its security configuration information

❑ Enforce authorization controls on every request, including those made by server side scripts, "includes" and requests from rich client-side technologies like AJAX and Flash

❑ Segregate privileged logic from other application code

❑ Restrict access to files or other resources, including those outside the application's direct control, to only authorized users

❑ Restrict access to protected URLs to only authorized users

❑ Restrict access to protected functions to only authorized users

❑ Restrict direct object references to only authorized users

❑ Restrict access to services to only authorized users

❑ Restrict access to application data to only authorized users

❑ Restrict access to user and data attributes and policy information used by access controls

❑ Restrict access security-relevant configuration information to only authorized users

❑ Server side implementation and presentation layer representations of access control rules must match

❑ If state data must be stored on the client, use encryption and integrity checking on the server side to catch state tampering.

❑ Enforce application logic flows to comply with business rules

❑ Limit the number of transactions a single user or device can perform in a given period of time. The transactions/time should be above the actual business requirement, but low enough to deter automated attacks

❑ Use the "referer" header as a supplemental check only, it should never be the sole authorization check, as it is can be spoofed

❑ If long authenticated sessions are allowed, periodically re-validate a user’s authorization to ensure that their privileges have not changed and if they have, log the user out and force them to re-authenticate

❑ Implement account auditing and enforce the disabling of unused accounts (e.g., After no more than 30 days from the expiration of an account’s password.)

❑ The application must support disabling of accounts and terminating sessions when authorization ceases (e.g., Changes to role, employment status, business process, etc.)

❑ Service accounts or accounts supporting connections to or from external systems should have the least privilege possible

❑ Create an Access Control Policy to document an application's business rules, data types and access authorization criteria and/or processes so that access can be properly provisioned and controlled. This includes identifying access
requirements for both the data and system resources

Database Security
❑ Use strongly typed parameterized queries

❑ Utilize input validation and output encoding and be sure to address meta characters. If these fail, do not run the database command

❑ Ensure that variables are strongly typed

❑ The application should use the lowest possible level of privilege when accessing the database

❑ Use secure credentials for database access

❑ Connection strings should not be hard coded within the application. Connection strings should be stored in a separate configuration file on a trusted system and they should be
encrypted.

❑ Use stored procedures to abstract data access and allow for the removal of permissions to the base tables in the database

❑ Close the connection as soon as possible

❑ Remove or change all default database administrative passwords. Utilize strong passwords/phrases or implement multi-factor authentication

❑ Turn off all unnecessary database functionality (e.g., unnecessary stored procedures or services, utility packages, install only the minimum set of features and options required
(surface area reduction))

❑ Remove unnecessary default vendor content (e.g., sample schemas)

❑ Disable any default accounts that are not required to support business requirements

❑ The application should connect to the database with different credentials for every trust distinction (e.g., user, read-only user, guest, administrators)

File Upload

• Filenames threats

• File extension handling

• Null-byte injection

File Management
❑ Do not pass user supplied data directly to any dynamic include function

❑ Require authentication before allowing a file to be uploaded

❑ Limit the type of files that can be uploaded to only those types that are needed for business purposes

❑ Validate uploaded files are the expected type by checking file headers. Checking for file type by extension alone is not sufficient

❑ Do not save files in the same web context as the application. Files should either go to the content server or in the database.

❑ Prevent or restrict the uploading of any file that may be interpreted by the web server.

❑ Turn off execution privileges on file upload directories

❑ Implement safe uploading in UNIX by mounting the targeted file directory as a logical drive using the associated path or the chrooted environment

❑ When referencing existing files, use a white list of allowed file names and types. Validate the value of the parameter being passed and if it does not match one of the expected
values, either reject it or use a hard coded default file value for the content instead

❑ Do not pass user supplied data into a dynamic redirect. If this must be allowed, then the redirect should accept only validated, relative path URLs

❑ Do not pass directory or file paths, use index values mapped to pre-defined list of paths

❑ Never send the absolute file path to the client

❑ Ensure application files and resources are read-only

❑ Scan user uploaded files for viruses and malware

Ref:

https://owasp.org/www-project-top-ten/2017/

